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LEAST-INDEX RESOLUTION OF DEGENERACY

IN LINEAR COMPLEMENTARITY PROBLEMS

WITH SUFFICIENT MATRICES

by Richard W. COTTLE and Yow-Yieh CHANG

ABSTRACT

This paper deals with the Principal Pivoting Method (PPM) for the Linear Com-
plementarity Problem (LCP). It is shown-herbthat when the matrix M of the
LCP (q, M) is (row and column) sufficient, the incorporation of a least-index
pivot selection rule in the PPM makes it a finite algorithm even when the LCP
is degenerate.

1. Introduction

The Principal Pivoting Method (PPM) for the Linear Complementarity Problem (LCP)

w=q+Mz (1)

w>O, z>O (2)

zW =0 (3)

was originally established for the cases where the matrix M E R '" is either a P-matrix (all
principal submatrices have positive determinants) or else is PSD (positive semi-definite).
See [21,[3],[6],[5]. Furthermore, in all these papers it is assumed that the problem at hand
is nondegenerate, meaning that for each solution of (1), at most n of the 2n variables
w 1 ,... ,wn,,z 1 ,...,z are zero. Degeneracy was handled by allusion to perturbation and
lexicographic techniques. For LCPs with P-matrices, a different approach was proposed by
Murty [10] who developed a Bard-type algorithm with a least-index pivot selection rule. The
present paper extends a technical report by Chang [1] in which degeneracy problems arising
in the PPM and Lemke's method [9] are resolved by means of least-index pivot selection
criteria. It should be noted that the results of [1] are confined to the two aforementioned
matrix classes.

Recently, Cottle, Pang and Venkateswaran [6] introduced the class of sufficient matrices that
contains all P-matrices, all PSD-matrices and other matrices as well. Actually, the class of
sufficient matrices is the intersection of two other classes: the row sufficient matrices and the
column sufficient matrices. As shown in [6], the latter two classes are intrinsically related to
the linear complementarity problem. Row sufficient matrices are linked to the existence of
solutions whereas column sufficient matrices are associated with the convexity of the solution
set. (See [6] for details.)
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More recently still, Cottle [4] showed that the PPM applies to nondegenerate LCPs with row
sufficient matrices. This left open the question of whether a least-index degeneracy resolution
scheme could be developed for this extension of the algorithm. In the present paper, we show
that when the matrix M of the problem (q, M) is (both row and column) sufficient and the
least-index pivot selection rule introduced by Chang (op. cit.) is used, the PPM will process
the LCP (q, M) in a finite number of steps.

Section 2 of this paper contains a quick review of some background needed for an appreciation
of the main result. This involves the basic definitions of row and column sufficient matrices,
a review of principal pivoting, and some results on principal pivoting in systems with row
and/or column sufficient matrices. In Section 3, we state The Principal Pivoting Method
with least-index pivot selection criterion, and in Section 4 we prove that it processes the
LCP (q, M) whenever M is a sufficient matrix.

2. Background

Since the matrix classes with which we deal are not well known, we recall what is meant by
row (and column) sufficient matrices.

Definition. The matrix M E Rx'" is

(i) row sufficient if

xi(MTX)i <_ 0 foral i =1,...,n == x(MTx)i = 0for all i= 1,...,n, (4)

(ii) column sufficient if

x,(Mx) _0 for all i = 1,...,n = Xi(Mz)= 0 for all i = l,...,n, (5)

(iii) sufficient if it is row and column sufficient.

Another way to express the conditions above is through the notion of the Hadamard product
of vectors (or matrices). If u E Rn and v E Rn, their Hadamard product is the vector
u * v E R' defined by

(u*v)i=ui.vi i=l,...,n.

To apply this notion to the definition of a column sufficient matrix, we let u = z and v = Mx.
Then the defining condition is

x*(MX)_<0 = x*(Mx)=0.

In the case of a row sufficient matrix, the defining condition is

x * (MTx) < O == x * (MTX) = 0.

It is demonstrated in [4] that sufficient matrices are different from P-matrices, adequate
matrices (see Ingleton [8]), and PSD-matrices; moreover, they are not necessarily positively
scaled versions of such matrices.
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As preparation for the brief summary to follow and for the statement of the least-index
principal pivoting method, it will be helpful at this point to review the notion of principal
pivoting. In equation (1) we have an affine transformation of n-space into itself given by
z "-- w = q-+Mz where M E Rnx'I and q E R n . For the present, let M be an arbitrary square
m trix with the property that for some index set a C {1,... , n} the principal submatrix Ma
is nonsingular. We may assume that the corresponding principal submatrix of M, namely
M., is a leading principal submatrix of M. This is not a restrictive assumption, as it can be
brought about by the process called principal rearrangement, the simultaneous permutation
of row and column indices. Now consider the equation w = q + Mz in partitioned form:

w .= q. + M . z. + M .z. (6)

w. = q, + Md.z. + Maza(

In this representation, the z-variables are nonbasic (independent) and the w-variables are
basic (dependent).

Since MAI is nonsingular by hypothesis, we may exchange the roles of w0, and z,, thereby
obtaining a system of the form

Z O q " ' + M ' a w .+ M ' , e 7We, + M,0 w, +M,z (7)

where

M. =(8)

q6 = qa - M6.M2q. M&a = M&,M;. M&n = M66 - M6.M;'M6

Definition. The system (7) is said to be obtained from (6) by a principal pivotal transfor-
mation on the matrix Maa. In this process, the matrix M.. is called the pivot block.

The following facts are noteworthy.

1. Every row (column) sufficient matrix has nonnegative principal minors. See [6].

2. Every principal rearrangement of a row (column) sufficient matrix is row (column)
sufficient. See [4].

3. Every principal submatrix of a row (column) sufficient matrix is row (column) sufficient.
See [4].

4. The class of row sufficient matrices and the class of column sufficient matrices are
invariant under principal pivoting. See [4].

3. The Least-Index Principal Pivoting Method

In this section we tersely state the (symmetric) principal pivoting method least-index pivot
selection rule. This algorithm (without the least-index tie-breaking rules) has previously been
extended to nondegenerate linear complementarity problems (q, M) in which the matrix M
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is row sufficient. The proof is given in [4] which may also be consulted for further details and
references.

The PPM works with pivotal transforms of the system

w = q + Mz. (9)

In the development below, we use the superscript v as an iteration counter. The initial value
of v will be 0, and the system shown in (9) will be written as

WO = q0 + MOz o .  (10)

In general, after v principal pivots, the system will be

WY' = q&+MI zI. (11)

Generically, the vectors w1' and zy, which represent the system's basic and nonbasic variables,
respectively, may each be composed of w and z variables. Principal rearrangements can be
used to make {w',z!'} = {wi,zi} i = 1,...,n.

Systems like (11) are traditionally represented by a tableau (or schema)

W, qy m' ...

Wn qv m ... my.

The symmetric version of the PPM executes principal pivotal transformations (with pivot
blocks of order 1 or 2) in order to achieve one of two possible terminal sign configurations in
the tableau. The first is a nonnegative "constant column", that is, q' > 0 for all i = 1,..., n.
The other is a row of the form

q'<0 and m'.<0 j=l,...,n.

The first sign configuration signals that (0', iy) = (qy, 0) solves (q,M). The second sign
configuration indicates that the problem has no feasible solution. The PPM (as originally
conceived) does not actually check for this condition. It cannot occur when my > 0 as in
the case of a P-matrix. In the more general row sufficient case, it can be inferred from the
condition

q<0, mr-=0 and m '>0 Vi3r,

which would be detected during the "minimum ratio test."

The PPM consists of a sequence of major cycles, each of which begins with the selection of a
distinguished variable whose value is currently negative. That variable remains the one and
only distinguished variable throughout the major cycle. The object during the major cycle
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is to make the value of the distinguished variable increase to zero, if possible. Each iteration
involves the increase of a nonbasic variable in an effort to drive the distinguished variable
up to zero. This increasing nonbasic variable is called the driving variable. According to
the rules of the method, all variables whose values are currently nonnegative must remain
so. The initial trial solution is (w0 , z °) = (q0, 0), hence at least n of the variables must be
nonnegative. For those variables w9 whose initial value is q0 < 0, we impose' a negative lower
bound A where

< min{ q}.

Then, in addition to requiring all variables with currently nonnegative values to remain so,
the PPM also demands that the variables currently having a negative value remain at least
as large as \. This broadens the notion of basic solution; nonbasic variables are now allowed
to have the value 0 or A. (See [1], [21, [3].)

To distinguish between the names of variables and their particular values, we use bars over
the generic variable names w' and zF. At the beginning of a major cycle in which negative
lower bounds A are in use, we will have i' = 0 or i'= i = 1,...,n. Next, we use the
notation

Wy (zV ) = qV + ML zV.

The definition of the mapping Wv is the same as that of w', but it emphasizes the argument
Z.

If, at the outset of a major cycle, the selected distinguished variable is basic, the first driving
variable is the complement of the distinguished variable. Thus, if w' is the distinguished
variable for the current major cycle, then z, is the first driving variable. The distinguished
variable need not be a basic variable, however. With the broader definition of basic solution
(given above), the current solution (tfv, i') may have , = A < 0 at the beginning of a major
cycle. In such circumstances, z, can be the distinguished variable as well as the driving
variable. In this event, the increase of the driving variable will always be blocked, either
when a basic variable blocks the driving variable, i.e., reaches its (current) lower bound (0 or
A\) or when the distinguished variable increases to zero (in which case the major cycle ends).
The point of the least-index degeneracy resolution scheme presented here is that ties in the
choice of the blocking variable can be broken so as to insure the finiteness of the PPM.

'This artifice is not needed when it is known that M E P.
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The Least-Index Rule. In applying the PPM to the linear complementarity problem
(q, M), break ties among the blocking variables as follows:

(A) If the distinguished variable is among the tied blocking variables, choose it as the
blocking variable (and terminate the major cycle).

(B) Otherwise, choose the (basic) blocking variable with the smallest index as the exiting
variable

Symmetric PPM with Least-Index Pivot Selection Rule

Step 0. Set v - 0; define (t-, z-0) = (q0 , 0). Let A be any number less than mini q.

Step 1. If q' > 0 or if (tfv, 2') _ (0,0), stop; (t", V') := (q" ,0) is a solution. Otherwise2,
determine an index r such that i = A or (if none such exist) an index r such that
i V< 0.

Step 2. Let ( be the largest value of z' > i' satisfying the following conditions:

(i) zr._!<0 if 2,v=A.

00i W'1(41.g..., lIzf, .+l,..., ,) <_0 if t < 0.
(iii W q'...,£,_l~zg,+l,..,,, _>0 if fvF > 0.

(i V) Will(iV,, ill , Z' Z-+ 1,...,"V) _>A if tb! < 0.

Step 3. If Cr = +0o, stop. No feasible solution exists. If Cv = 0, let ,;+I = 0, ,i'+ = £i, for
all i y r, and let

f-+, = WV+l(rv+l) = w(-+l).

Return to Step 1 with v replaced by v + 1. If 0 < C," < +o, let s be the unique
index determined in Step 2 by the conditions (ii), (iii), (iv) and the least-index rule.

Step 4. If m' + ' > 0, perform the principal pivot (W, z'). Let

, '+1 = W.P(,g,.,o,',,,,... .n ,"+i WV+1( ,+I).

If s = r, return to Step 1 with v replaced v + 1. If s 9 r, return to Step 2 with
Y replaced v + 1. If mro = 0, perform the principal pivot {(w ,z4),(w4, 4)). Put

al+l ,i v+ = R Cetur ,+t Ste for all i f {r,s}, and then tav ++ = W!'+1(2A"+ ') for
all i f{r, s}. Return to Step 2 with v replaced by v + 1 and r replaced by s.

2At the beginning of a major cycle, for each index r, at mst one of w,, z4 can be negative.

6



4. The Finiteness Argument

In the following, we show that the PPM with the least-index rule (stated above) will process
any linear complementarity problem (q, M) in which M is sufficient. It is interesting to
observe that the mechanics of the algorithm itself appears to require only the row sufficiency
property. The finite termination of the algorithm (with or without the least-index rule) is
assured if each major cycle is finite, for the total number of negative variables is nonincreasing
during each major cycle and decreases strictly at the end of the major cycle. Such finiteness
is realized when the problem is nondegenerate. We show here that, even for degenerate
problems, the major cycles of the PPM are finite provided the least-index rule is enforced
in the pivot selection criterion. As will be seen below, the finiteness of the PPM with the
least-index rule hinges on the column sufficiency property. This is why we assume the matrix
is both row and column sufficient.

If cycling occurs in a major cycle it is not restrictive to assume that it is one in which w, is the
distinguished variable. It follows from [4, Theorem 4] that since w, and z1 are monotonically
increasing, both w, and z1 are fixed during cycling. However, the algorithm tries to increase
w, or z1 in this major cycle. Hence stalling occurs during these steps. Accordingly, if we
delete all the variables that are not involved during cycling, the PPM with the least-index
rule merely looks for the index i such that

a = min{i : m <0}

and then pivots on m" (if m' 3 0) or it pivots on

(m1 mIs if m =  =0.

Without loss of generality, we may assume that all the variables are involved in the pivoting
during cycling. Then, during cycling, the PPM with with least-index rule performs the same
pivoting sequence as the following scheme does.

Scheme

Step 0. Start with the system w' = q + M'z", v = 0, where wo - qO + MOz o is the
initial system. (In the following, M.1' represents the column of M' corresponding
to the nonbasic variable zr" at iteration v. Similarly, Mi'. represents the row of M
corresponding to the basic variable w7'.)

Step 1. If M.' >_ 0, stop. The driving variable z' can be increased strictly. Otherwise, let
s = min{i m'1 < 0.

Step 2. If m' > 0, perform a pivot on mo and return to Step 1 with v replaced by v + 1.
Otherwise, perform a block pivot of order 2 on the principal submatrix

and return to Step 1 with v replaced by v + 1.
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If we can show that M." > 0 after a finite number of pivots in the above scheme, then, since
the driving variable z" can be increased strictly at this step, we obtain a contradiction to the
assumption that cycling occurs in a major cycle (in which w, is the distinguished variable)
of the PPM with the least-index rule.

Before proceeding, we present a small result on sufficient matrices.

Lemma 1. Let M E /Rxn be column (row) sufficient. Then for any real numbers a, b, c such
that ab < 0 < c, the matrix

n 1 1 iM1 2  M • in a

M 21 m2 ... M2n 0

mnl mn2 • • nn 0

b 0*.. 0 c

is also column (row) sufficient.

Proof. It suffices to prove the assertion for column sufficient matrices. Let i = (T1, z 2 ,... 9, xT+l)T

satisfy the inequalities xi(Ml/)i < 0 for i = 1, ... , n + 1. Then in particular,

zI(mziXI + ... + minXn) < -axXn+l

and

bx1x+ 1  2+l <0.

Since ab < 0 it follows that -axrX+l <0 . Thus
ftX,(] mij) < 0 i =1,...,n.

j=1

Since M is column sufficient,
n

Xi( -'rijXj) = 0 i =1,...,n.

j=1

In particular, it follows that xl~,,+l = 0. This, in turn, implies that i * (Mi) = 0. 0

Notice that Lemma 1 provides a mechanism for generating sufficient matrices of arbitrarily
large order.

Lemma 2. In the above scheme, a pivot in row s, where s > 2, must be followed by a pivot
in some row with a larger index before another pivot in row s can occur.

Proof. The proof is by induction. If the matrix M is of order 1 or 2, the lemma is trivial.
Suppose the lemma holds when the order of M is less than n and now consider the case when
M is of order n.
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We shall examine the situation where two pivots occur in row s and 2 < s < n- 1. If, between
these two pivots, there is no pivot in some row with a larger index, then by deleting M.n
and Mn., a contradiction to the inductive hypothesis can be derived. Therefore, it suffices to
show that there is at most one pivot in row n.

Suppose a pivot occurs in row n at iteration Yl. Let (Ti) denote the corresponding tableau
at this iteration.3

1 zi ... Zn

Wn q n l "n " nn

Tableau (TI)

By the choice of the pivot row, we have rmil n 0 for all i < n - 1 and mn1 < 0 in (T1).

Suppose the next occurrence of a pivot in row n is at iteration v 2. When this occurs, z, must
be the exiting basic variable and wl is either basic (Case I) or nonbasic (Case II).

Case I. (w, is a basic variable at iteration v2.) Let a' be the set of indices i such that wi is
nonbasic at iteration v2. Note that 1 a. Let R denote the principal transform of M at this
iteration. Clearly, R can be obtained from M by performing a block pivot on the principal
submatrix M,,. Thus,

= -M;M 1 . (12)

Now

7 - and Ml 1 - (13)

Being a (nonsingular) principal submatrix of a sufficient matrix, M,, is also a sufficient
matrix. (See [4].) From (12) and (13), we have

a) e (e)
E e e

Mo1*A M1AMol)= -  : * : =- :

E e E

3 For simplicity, we represent (TI) without using superscripts.
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which is impossible since M-', is column sufficient.

Case H1. (w, is a nonbasic variable at iteration v2.) Let the definition of a be as in Case I, but
note that now we have 1 E a. Since ft,, is sufficient, the diagonal entry ri11 is nonnegative.
There are two cases.

Case 11.1 (fr1 l > 0.) The pivot on in, would not change the sign configuration of MXi
namely

(D

Once this pivot is performed, we have Case I (with a different index set o).

Case 11.2 (rnll = 0.) Here there are two more cases.

Case 11.2.1 (il, > 0.) By performing a pivot on m, in schema (TI), the variable w1
becomes nonbasic and the sign configuration of M.1 is unchanged. Therefore, as in Case I, a
contradiction can be derived.

Case H.2.2 (mi = 0.) Let (T2) denote the tableau at iteration v2 .

1 W z&

Wo 4a M& o Maa

Tableau (T2)

In this tableau, a = {1,...,n} \ a.

Now let qn+l E R be arbitrary and enlarge (TI) to (TI*) as follows

1 z, z2  .- " z n +

W1  q, i 1 1  in 1 2  -" 'n -1

w 2  q2 M 21  M 22  ... m2n 0

wn qn Mnl mn "'" mn 0

wn+1 qn+l 1 0 ... 0 1

Tableau (TI*)

10



By Lemma 1, the bordered matrix of tableau (T1*) is sufficient. The block pivot on the
principal submatrix M,, in (T1*) produces a tableau (T2*) having (T2) as a subtableau.

1 wO z& z,_+_

ze 4o Moe Moo M5 ,. i

U)5  qo M5o Moo M5o,.

Wn+i I n+1 M fn+l,, Mn+l,a Mn+l,n+l

Tableau (T2*)

Notice that (T2*) has the same basic z-variables as (T2), hence Tableau (T2*) is the corre-
sponding enlargement of (T2).

Pivot on M,,
(T1) -- (T2)

Enlargement I I Enlargement

(T1*) (T2*)
Pivot on M,,

By pivotal algebra, we have

,,.+ll= (Mn+1,oeMo)1

-(1, 0,. 1 •,)-tffl

=0.

Now the matrix (il M ' ( 0 -1
MTn+l, 1  MIn+l,n+ 1  1 I 1

is nonsingular and can be used as a pivot block in (Tl*). Denote the resulting tableau by
(T2**). In it, w1 and wn+1 are nonbasic while all the other wi are basic.

11



1 Z2 ... Z' Wn+ 1

Z1  q in 1 1 Mi l 12  "" n fl r,,+

W 2  q2  M2 1  M22 ... r,, r2n+l

Wn %n Mnl Mn2 ... Mn Mnn+l

zn+1 41+1 mi+ll mf+i, 2 ... rfi+l,n M .+.n+l

Tableau (T2**)

In Tableau (TI*), we have

Mil1 = 0, rMil >_ 0 i -- 2,..., n - 1, Mn1 < 0, and rn+l,l -1

Hence

ri, = 1, M= i >_ 0 i = 2,..., n - 1, r~nl < 0, and r n+1,1--1

Now, since both (T2*) and (T2**) are principal transforms of tableau (TI*), it follows that
(T2**) is a principal transform of (T2*). In fact, if we define the index set p = (av \ {1}) U
{n + 1}, then (T2**) can be obtained by performing a block pivot on the principal submatrix
M,, in (T2*). Therefore Mp,1 = -MM 1K,,. The indices n and n + 1 belong to p and

rf&l < 0, r ,+l,l = 0, M < 0, rnn+ll = -1

while fni, >_ 0 and rolj > 0 for all other i E p. Accordingly, we obtain

e' fe e

MPe,,,.'~ '-  * e e

0 + 0

But this is impossible since Mr' is (column) sufficient. 03

Lemma 3. In Tableau (TI), M., > 0 after a finite number of iterations.

Proof. For j > 1, let /(j) be the number of pivots that occur in row j. In the proof of
Lemma 2, we have shown that /(n) <_ 1. Furthermore, it follows from Lemma 2 that

12



In other words,

p(n- 1)_5p(n) + 1 <2
- 2) < 22

p(n - i)_2 - + 2 - 2 + + 2 + 20 = 2'.

Therefore, the scheme will terminate after a finite number of iterations. 0

Theorem. In the case of a linear complementarity problem (q, M) with a sufficient matrix
M, every major cycle of the PPM with the least-index rule consists of a finite number of
pivots.

Proof. Suppose cycling occurs in a major cycle in which w, is the distinguished variable.
Then, since w, and z, are monotonically increasing, both w, and z1 are fixed during cycling.
However, it follows from Lemma 3 that M.1  0 after a finite number of steps. Therefore
either w, or z, can be strictly increased after a finite number of steps, in contradiction to the
assumption that cycling occurs. 0

Corollary. In the sufficient matrix case, the PPM with least-index rule will process the LCP
(q, M) in a finite number of steps.

Proof. Each major cycle of the algorithm reduces the number of negative components in
(w, z) by at least one. The assertion now follows from the Theorem. 0

Remark. In implementing the least-index rule it is important to obey statement (A) which
says that if the distinguished variable is among the tied blocking variables, then it is to be
chosen as the blocking variable. Failure to do so can lead to the false impression that the
problem is infeasible.
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